

A Unified Model for Video Understanding and Knowledge Embedding with Heterogeneous Knowledge Graph Dataset

Jiaxin Deng¹, Dong Shen², Haojie Pan², Xiangyu Wu², Ximan Liu², Gaofeng Meng^{1*}, Fan Yang², Tingting Gao², Ruiji Fu², Zhongyuan Wang²

¹National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences ²MMU KuaiShou Inc.

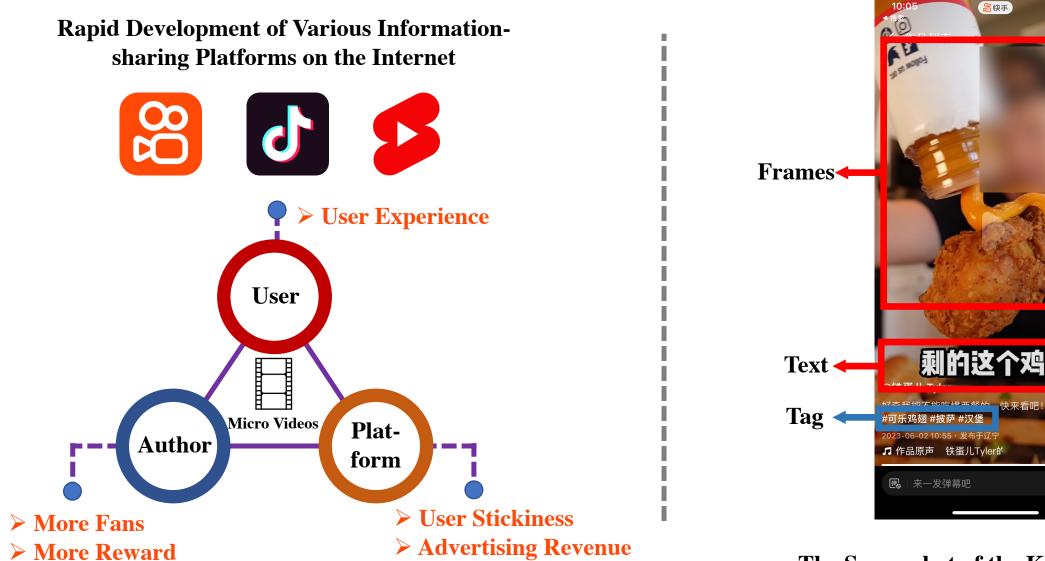
*Corresponding Author

Background: Micro-Video Understanding

::!! ? 🕻

分享

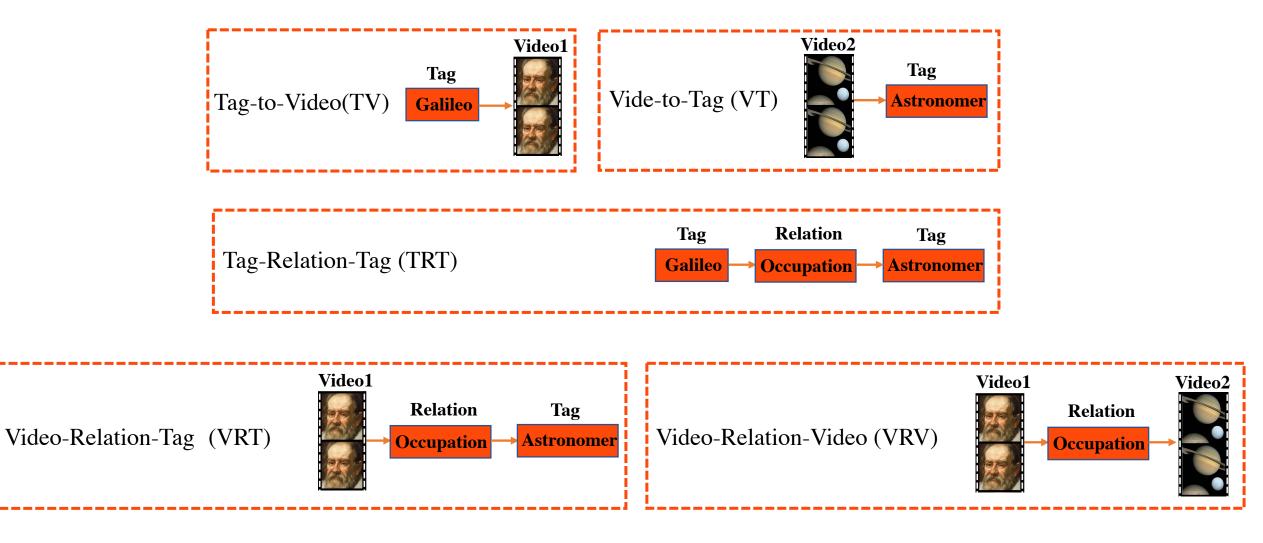
Speech



The Screenshot of the Kuaishou APP

Motivation

> Combining Video Understanding with Knowledge Graph Embedding



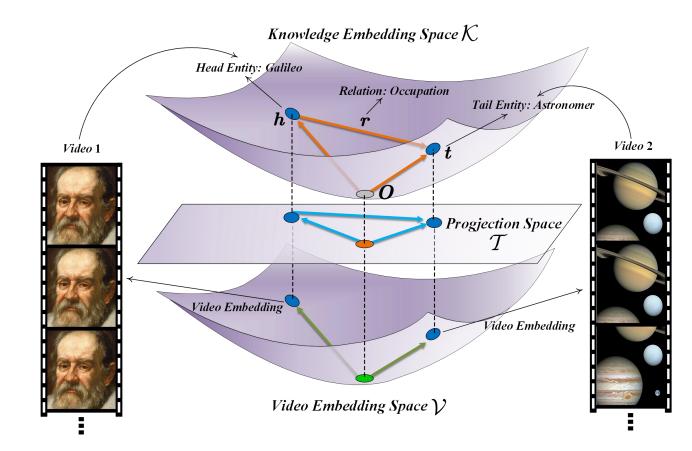
Motivation

> Exiting Methods

- KGE: TransE^[1], TransH^[2], etc Only focus on low-dimensional space
- KGE + Language Model: K-BERT^[3] Only focus on text modality
- KG + Video: ACAR-Net^[4] Only focus on human activity recognition

Three Challenges

- Form a video-based multi-modal knowledge graph dataset
- An effective embedding representation of video
- The heterogeneity issue of video and KG triplet



[1] Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., & Yakhnenko, O. (2013). Translating embeddings for modeling multi-relational data. Advances in neural information processing systems, 26.

[2] Wang, Z., Zhang, J., Feng, J., & Chen, Z. (2014, June). Knowledge graph embedding by translating on hyperplanes. In Proceedings of the AAAI conference on artificial intelligence (Vol. 28, No. 1).

[3] Liu, W., Zhou, P., Zhao, Z., Wang, Z., Ju, Q., Deng, H., & Wang, P. (2020, April). K-bert: Enabling language representation with knowledge graph. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 34, No. 03, pp. 2901-2908) [4] Pan, J., Chen, S., Shou, M. Z., Liu, Y., Shao, J., & Li, H. (2021). Actor-context-actor relation network for spatio-temporal action localization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 464-474)

Dataset: Video Knowledge Graph Dataset & CN-DBpedia

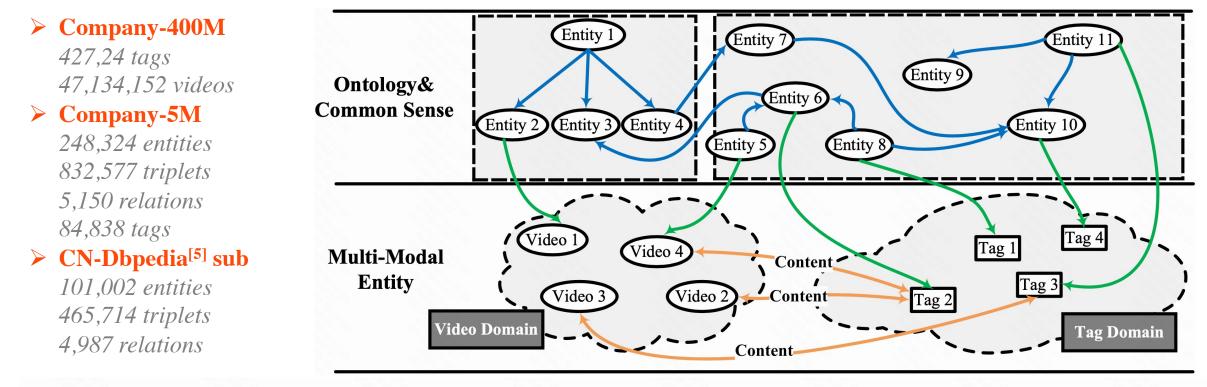
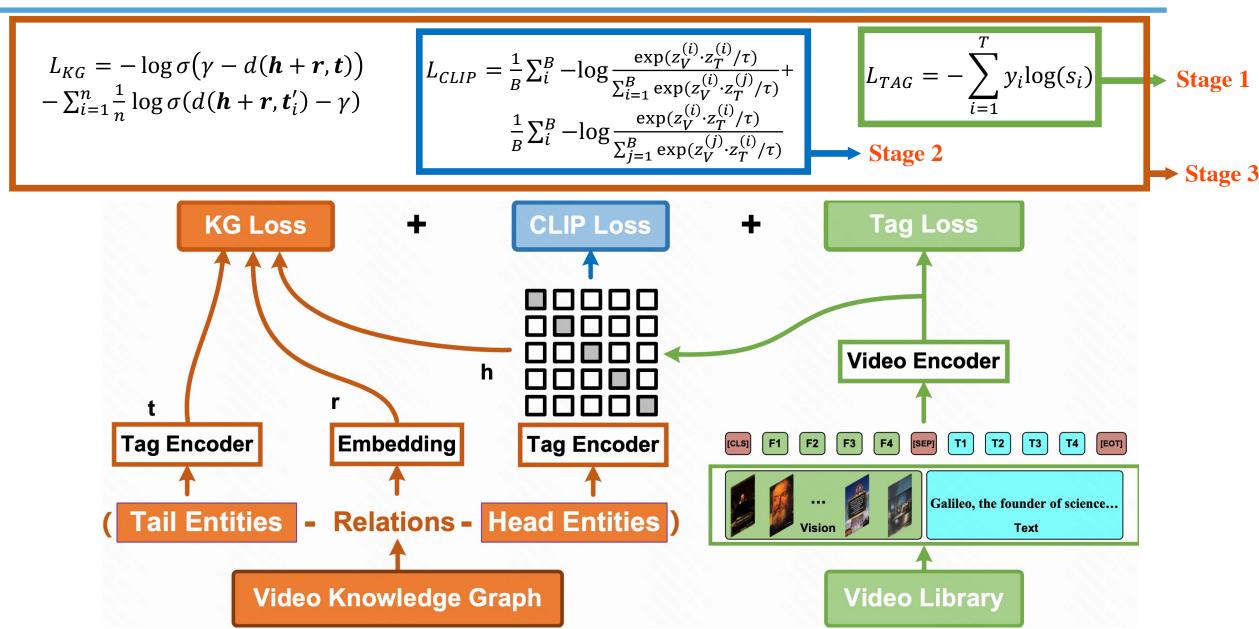


Table 1: The meta information of the related dataset. \mathcal{V} , \mathcal{A} and \mathcal{T} represent video, audio and text respectively.

Dataset	Entities	Triplets	Relations	Tags	Modalities	Videos
Company-400M	-	-	-	427,249	$\{\mathcal{V},\mathcal{A},\mathcal{T}\}$	47,134,152
Company-5M	248,324	832,577	5,150	84,838	$\{V,\mathcal{A},\mathcal{T}\}$	5,714,531
CN-DBpedia sub	101,002	465,714	4,987	-	$\{\mathcal{T}\}$	-

[5] Xu, B., Xu, Y., Liang, J., Xie, C., Liang, B., Cui, W., & Xiao, Y. (2017, June). CN-DBpedia: A never-ending Chinese knowledge extraction system. In Advances in Artificial Intelligence: From Theory to Practice: 30th International Conference on Industrial Engineering and Other Applications of Applied Intelligent Systems, IEA/AIE 2017, Arras, France, June 27-30, 2017, Proceedings, Part II (pp. 428-438). Cham: Springer International Publishing.

Proposed Method



Evaluation Tasks

- Tag-to-Video(TV)
- Vide-to-Tag (VT)
- Tag-Relation-Tag (TRT)
- Video-Relation-Tag (VRT)
- Video-Relation-Video (VRV)

> Baselines

- TransE (Bordes et al., NIPS 2013)
- TransH (Wang et al., AAAI 2014)
- TransR (Lin et al., AAAI 2015)
- CLIP (Radford et al., ICML 2021)

- CLIP+TransE
- CLIP+TransH
- CLIP+TransR
- Ours

Table 2: The baselines and variants of our method. \mathcal{L}_{KG} represents the corresponding	KGE loss for	TransE, TransH or TransR.	

Baseline	VRV	VRT	TRT	VT	TV	$\mathcal{L}_{\mathrm{TAG}}$	$\mathcal{L}_{\text{CLIP}}$	$\mathcal{L}_{\mathrm{KG}}$
TransE			\checkmark	-		-		\checkmark
TransH	-	-	\checkmark	-	-	-	-	\checkmark
TransR		-	\checkmark	-	-	-	-	\checkmark
CLIP		25		\checkmark	\checkmark	\checkmark	\checkmark	-
CLIP+TransE	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark
CLIP+TransH	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
CLIP+TransR		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Ours			\checkmark	\checkmark		\checkmark	\checkmark	

Evaluation Metrics

- Mean Rank (MR)
- Hit@n

Experiment Result

Content based Retrieval Task Performance

• The participation of knowledge graph embedding benefits the content retrieval task.

Table 3: The performance comparison of VT and TV retrieval task.

Method		V	Ϋ́Τ		TV				
	MR	HITS@1	HITS@3	HITS@10	MR	HITS@1	HITS@3	HITS@10	
CLIP	14515.2419	0.0885	0.1487	0.2252	12038.8518	0.1143	0.1864	0.2660	
Ours	10622.3440	0.1241	0.2186	0.3438	9030.5341	0.2786	0.3907	0.4759	

> VRV and VRT Inference Task Performance

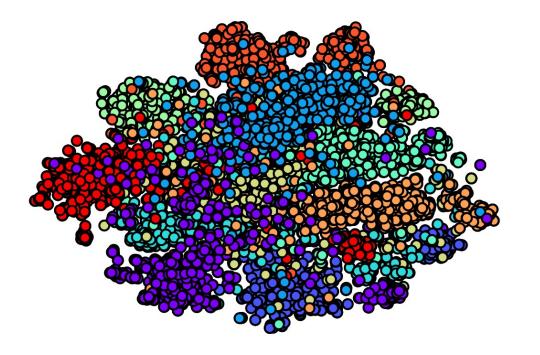
• Two-stage methods lack the synthetic integration of multi-modality entities and knowledge graph embeddings.

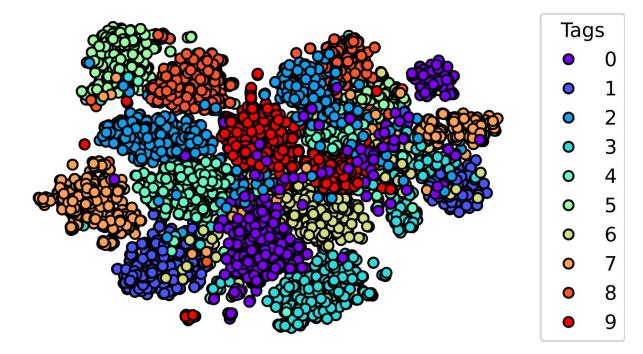
	0.10.1		0.16.20.20	6.16.10		all the Colder	6. M. BON	
Method	VRV				VRT			
	MR	HITS@1	HITS@3	HITS@10	MR	HITS@1	HITS@3	HITS@10
CLIP+TransE	23356.6640	0.0340	0.0618	0.0961	52.3991	0.0508	0.1019	0.3981
CLIP+TransH	23168.7382	0.0368	0.0674	0.1063	34.7941	0.0498	0.1198	0.4506
CLIP+TransR	27608.6244	0.0475	0.0884	0.1396	25.5660	0.0508	0.2152	0.5869
Ours	8357.8196	0.2759	0.3977	0.5632	13.4505	0.1144	0.4308	0.7642

Table 5: The performance comparison of VRV and VRT inference task.

Experiment Result

- KGE space helps the embedding of tag and video cluster better.
- KG knowledge benefit the content-based retrieval task.





Contributions

- To the best of our knowledge, we first define a novel formulation of the Video-Relation-Video and Video-Relation-Tag inference tasks.
- We propose and form a large scale heterogeneous video knowledge graph dataset which is capable of conducting Video-Relation-Video and Video-Relation-Tag inference tasks.
- We propose a transformer architecture for multi-modal video understanding and knowledge graph embedding integration.
- Extensive experiments indicate that our method achieves the *state-of-the-art* performance on video inference tasks and it also brings improvement on content-based video retrieval tasks.

Future Work

- Conduct more experiments on public multi-modal knowledge graph datasets such as FB15K237^[6].
- Explore more advanced approaches to integrate video understanding and KG semantic space.